
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A241 700
DTC,

;'PCG R A 03D I
'1c[.28 191JUi

THESIS

MAGNETIC FIELDS AND ELECTRON TRAJECTORIES

AT THE END OF A HELICAL UNDULATOR

by

Daniel Ergen Craun

December 1990

Thesis Advisor: Wm. B. Colson

Approved for public release; distribution is unlimited.

91-13994
'l11 llli1111 lllTlA tI ;I, i1

Iill~ll~ll lllll t " " / "' . "



Unclassified
SECURITy" CLASS.F CA "ON OF -T'5 PAGE-

REPORT DOCUMENTATION PAGE 1;3 No00408

a REPORT SECURITY CLASS:C!CATI0)N Ib RESTP C.,VE VARK;NGjS

2a SECURITY CLASS iI CA IUON AUTHO~R:TY 3 DI ST BLTiOt AVi'ALLTy OF REPO'RPT

'b Approved for public release
2, DECLASSIFICATION I DOWNGRADING SCH~EDULE Dis zributiori is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MOCNT7ORING OPGAVZATON REPORT %L'/BE- S;

Ea NAME OF PERFORMING ORGANiZATiON 6b OFF!CE SYMBOL 7a NAME OF MON%!70PNG ORGAN 24A7, 0
(if applicable)

Naval Postgraduate School PH Naval Postgraduate School

6c ADDRESS (City, State, and ZIP Code) ADDRESS (City State and ZIP Code)

Monterey, Calif. 93943-5000 Monterey, Calif. 93943-5000

Ba NAME; OF ;uND;,NG SPON SOR % NC Tm P flF C *2V e C:CM r
ORGANIJZATO0N J(if applicable)

Bc ADDRESS (City State and ZIP Code) '0 S0C,,C O- JN% NC G

:1RGC-3AM1 P ROEC- LS. I' AO) k T
E.E;VEN %O 1j. NO jACCESSON NO

1 TITLE (include Security Classification)

MAGNETIC FIELDS AND EL C7hON TRAJECT0RIES AT THE END M7~ A HELICAL LTNDULATOR

12 PERSONAL A-jTHORS,

Craui, D..ei i.
13a TYPE OF R:-?CRT 3t TINE COVERED 4DA-F Oc RE:POP7 (Year, WWInrl ~,YI *5 A Cl

Musters Thesis IR. ____ O___ December 20, 869I
6 SUPPLEMEN'ARY %OTAION The views e::?ressed in this Lcis is w _:e those e::pressed by~
the author and do not reflect the official polic; or ?ositilo: OZ the Dea" e:to

Defense or the U.S. goverumelt. ea enof f

77*D- CO DES co s 8 SgAjECT TERMIS Coitrniue on reverse it necessary ancy Ocenrtry oy ctcck rumoer)

;-- 'OP SU6 GROuP Siliuiacio~i, current element integration, compact FEL
undu~curdt-Sin 1 repres:,LaLiuis , nagnetic field represer-

9 A8S7RAC: Continue on reverse if necessary anld identify by block numoer)

An iandulator is a periodic magnetic field device that is an integral part of a

Free Electron Laser (FEL). T he key to FEL performance is the undulator design.

This thesis models the undulator magnetic fields by using the Biot-Savart law, a

current element integration technique. Apply'.ng this technique to different W"ind-

ing schemes for a bifilar helical compact undulator, the field structure is computed

for positions outside the entrance to the undulator. These stray fields can have a

focusing or defocusing effect on the incoming electron beam. This disturbs the crit-

ical matching of the electron velocity vectors with the co-propagating laser radia-
,nDSPBJrO A.A5,B 7Y ABSTRaCT 21 ABST PAC' S C R T Y CLASS :,CA' ON

_;%VXASSIF E3;--M2--D SAIVE A'S OPT C3 Z)TC USERS Unclassir jed
% a AME OF RESW, %S 8 NDiVID~jFL 2Z% E ((nclude trea C.1oel ) O

W4illiari B. o ij 2,c7 0-

L.witM 1473, jJN 86 Previous editions are oolete SCLYC A S F__ 0,C

S,'N 0) 02-LF-01-6,0I( Uinclassified

i



Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

tion. The matching of velocity vectors controls the bunching of the electrons. This

bunching action controls the gain of the FEL, and thus, the ultimate performance

of the entire device. By choosing a better design for the undulator, this unwanted

effect is reduced.

The field structure found from integration determines the electron trajectories.

The best design for the undulator is then determined by the imposed input condi-

tions on the electron beam for entry into the cavity. An additional benefit of this

technique is a potential application to finding coil winding tolerances for undulator

construction.

C
C
C

C
C

r

DD Form 1473, JUN 86 (Reverse) SECURITY CLASSIFiCATiON OF THIS PAGF

Uncla-sified

ii



Approved for public release: distribution is unlimited.

MAGNETIC FIELDS AND ELECTRON TRAJECTORIES

AT THE END OF A HELICAL UNDULATOR

by

Daniel E. Craun

Lieutenant, United States Navy

B.S., United States Naval Academy,1982

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL

December 1990

Author: - =-.

Daniel E Craun

Approved by: ). '. LbrP-/7l

William B. Colson, Thesis Advisor

F-Pra d Reader

Knrlheinz E. Woehler, Chairmp',

Department of Physics

iii



ABSTRACT

An undulator is a periodic magnetic field device that is an integral part of a

Free Electron Laser (FEL). The key to FEL performance is the undulator design.

This thesis models the undulator magnetic fields by using the Biot-Savart law, a

current element integration technique. Applying this technique to different

winding schemes for a bifilar helical compact undulator, the field structure is

computed for positions outside the entrance to the undulator. These stray fields

can have a focusing or defocusing effect on the incoming electron beam. This

disturbs the critical matching of the electron velocity vectors with the co-

propagating laser radiation. The matching of velocity vectors controls the bunching

of the electrons. This bunching action controls the gain of the FEL, and thus, the

ultimate performance of the entire device. By choosing a better design for the

undulator, this unwanted effect is reduced.

The field structure found from integration determines the electron trajectories.

The best design for the undulator is theun determined by the imposed input

conditions on the electron beam for entry into the cavity. An additional benefit of

this technique is a potential application to finding coil winding tolerances for

undulator construction.
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I. INTRODUCTION

One of the designs proposed for a Directed Energy Weapon capable of

delivering large amounts of energy at a considerable distance at the speed of light

is the Free Electron Laser (FEL). The FEL uses a relativistic electron beam as a

power source coupled to the radiation inside of an undulator. The FEL has many

of the same attributes as ordinary lasers, such as coherence, high rate of fire and

high energy density [1]. The FEL additionally has the ability to be tuned over a

large range of wavelengths which increases its flexibility for diverse laboratory

applications, and as a speed of light weapon, can be tuned for maximum

atmospheric propagation.

The key to the performance of the FEL is the undulator design. The

undulator bends an incoming relativistic electron beam back and forth resulting in

the emission of photons in the forward direction. If the undulator is placed inside

a laser resonance cavity, and the dimensions are adjusted appropriately, a FEL is

made which has the capability to tune the output radiation. The undulator defines

the magnetic field structure, and thus controls the electron trajectories. Therefore,

the exact position and velocity of the individual electrons is dependent on the

design of the undulator. The electron positions and velocities in the co-propagating

laser radiation are critical to the evolution of electron bunching. This electron

bunching is responsible for the high energy transfer (gain) between the electron

beam and the light. This gain determines important aspects of the performance of

the FEL. Since the undulator controls the gain achieved, the chosen design of the

undulator will limit the ultimate performance of the FEL.

This thesis models the undulator magnetic fields using the Biot-Savart law.

Using this current element integration technique, we apply it to different winding

schemes for a bifilar compact undulator. The field structure can then be computed
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for positions outside the entrance tc the unduLator. These stray fields can have a

focusing or defocusing effect on the incoming electron beam. The matching of the

electron v 4ocity vectors with the co-propagating laser radiation is essential to the

energy transfer from the electrons to the light. The energy transfer between them

is called coupling. This coupling controls the gain of the device. The loss in

coupling from the focusing or defocusing effect results in iower gain. By choosing a

better design for the undulator, this unwanted effect is reduced.

The field structure found from integration is used to determine the electron

trajectories. The best design for the undulitor is determined by the imposed input

conditions on the electron beam for entry into the cavity. An additional benefit of

this technique is in showing coil winding tolerances.

Several new simulation programs have been developed to calculate and

graphically display the undulator magnetic fields. These calculations were used in

new simulations for calculating the electron trajectories. This work resulted in two

talks; one at the Twelfth International Free Electron Laser Conference in Paris,

France and the other at the International Conference on Lasers '90 in San Diego,

California. The talk in Paris has been submitted for publication in Nuclear

Instruments and Methods in Physical Science, (1991). Additionally, a spread-sheet

was started to display input and output parameters for comparison of different

type FELs. The spread-sheet would be useful for a project manager in the Navy tu

determine optimu-: design parameters as a second check on proposals. This

project will be completed by a following thesis studeat.
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II. BACKGROUND

A. THEORY OF FREE ELECTRON LASERS

The Free Electron Laser has many of the same attributes -is a regular laser.

Some of these attributes are "...remarkable dircctionality, spectral purity, and

intensity" [2]. An ordinary laser is composed of several components (Figure 1).

feedback and
mirror oscillation atoms (laser medium)atomslatmedium)o

laser output
-Deam

R = 100% R=80%

pumping process

Figure 1

Elements of a typical laser from Ref. [2].

The essential elements of a laser are: (i) a lasing medium; (ii) a pumping process;

and (iii) suitable optical feedback elements that allow a beam cf radiation to either

pass once through the laser medium (as in a laser amplifier) or bounce back and

forth repeatedly through the laser medium (as in a laser oscillator) [2].
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The Free Electron Laser is constructed differently (Figure 2) and uses

different physics to evolve the light amplification. Figure 2 shows the overall

components and the relationship between the electron trajectory and the co-

propagating light. The FEL lasing medium is a relativistic electron beam. The

FEL pumping process is from the energy exchange between the electron beam and

co-propagating light in a vacuum. Mirrors form the optical feedback system shown

for an oscillator configuration. The amplifier configuration does not have mirrors.
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Figure 2.

Schematic showing basic FEL setup. Also shown is the positional (phase)

relationship between the light wave and the electron trajectory from Ref. [3].
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One of the attributes that the FEL possesses is the capability to "tune" the output

radiatiun over a range of wavelengths by changing the electron beam or undulator

parameters. Another attribute is the absence of extraneous material in the lasing

medium, allowing the possibility for increasing the power density to weapons grade

potential. Thus, the FEL is a candidate for a Directed Energy Weapon, and its

tunability gives it flexibility in optimizing atmospheric propagation [1].

Given the description of an FEL made earlier, we need to understand the

physics of the device. Upon entering the undulator, the relativistic electrons are

"wiggled" back and forth by alternating magnetic fields. From electrodynamic

theory, we know that a relativistic charged particle that is accelerating produces

electromagnetic radiation in the forward direction. The radiation is emitted in a

cone centered around the particle velocity that resembles a "flashlight" (Figure 3).

X I cycle (period)

completed by eleotron particle trajectory

y Y VI ! radiation 'cone' centered around
particle velocity (V)

Figure 3.

Relativistic emission of radiation by an accelerating charged particle.

Since the width of cone is wide compared to the cavity dimensions, most of the

radiation is lost and only 10% is retained. Subsequent electrons will radiate into

the cavity also. Even though there is only about one photon radiated per pass per

electron, the electron beam density is approximately 1012 electrons/cm 3 so that

6



there is a large photon density. Due to the resulting large photon density,

spontaneous emission will rapidly be dominated by stimulated emission leading to

coherence. Spontaneous emission is responsible for the self-starting capability of

the FEL. As spontaneous emission is replaced by stimulated emission, the

conditions are set to start matching the electron velocity vectors with the co-

propagating radiation. This matching leads to energy transfer between the

electrons and the light and is known as coupling. The coupling is responsible for

the gain of the device. The high energy transfer and efficiency of the FEJ comes

from the coupling of the free electrons to the coherent radiation set up in the

cavity.

To understand this coupling, we need to develop a few equations. Assume the

radiation is established with a particular wavelength (Figure 4). The velocity of

the electron is Et = fc where c is the speed of light. Since the electrons are

relativistic, the transverse velocities are small with respect to the velocity in the z

direction, 1 = = v Ic . The period of the transverse electron motion

corresponds to an undulator wavelength %,. The condition of resonance occurs

when the speed difference between the electron and the light is such that one

wavelength of light, X, passes over the electron as the electron travels through one

undulator wavelength, Xo. The electron travels through the undulator period of

Figure 4 in the time interval At = Xo/([3zc). Considering the difference in speeds,

the condition of resonance describes the wavelength of light after the electron has

traveled through an undulator period. At resonance, we find

X = cAt - PcAt = cAt - X, = (1 - P,)o/ A, (1)

For relativistic electrons with small transverse velocity, the Lorentz factor is

1 , but o= - so, = (I-y-2)12  (2)
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Using the binomial theorem (1 - x)' = 1 - nx - (n/2Xn-1)x2 . , and

neglecting second-order and higher terms, we arrive at

Pz =  1- - (3)

S 0r 0 1 L -- 7tL/c~

per led

e/ec~ro , speed( radia;. 1 s0, eed/

Figure 4.

Schematic showing relative positions of the electron and light

wave through an undulator period X.

Using (3), we have

= (4)
2y

This is the relationship between the undulator wavelength, X., the electron

energy, 'y, and the wavelength of light in the cavity, X. If either y, or Xo, are

changed, the wavelength of the cavity radiation, X, is changed. This shows the

tunability of the Free Electron Laser.

The preceding discussion shows some of the relationships between different

parameters in the undulator. Figure 5 shows a planar representation of the

relationship between the electron trajectory and the undulator field. We want to
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find the equations of motion for the electron so we need to develop expressions for

the forces and fields affecting it.

zx

z S electron pt

z

Y

3=> ' orientation of /(3©time t-O
0

Figure 5.

Simplified planar representation of one undulator

period and resultant electron trajectory.

The charged electron feels a force given by

= q( + Ex ) , (5)

where

E3 is the electron velocity,

is the electric field felt by the electron,

q is the charge of the electron, and
B is the magnetic field felt by the electron.

9



The only fields felt by the electron are due to the cavity radiation, Er, and the

total magnetic field which consists of the undulator magnetic field, Y.. and the

radiation magnetic field, r. Therefore,

) d =p + Oc xg
dt dt

dt =(m + =( r +  (6)

Now, using the definition of momentum gives

d_ = mcd( )
dt dt

but the electron energy is E = -mc 2. The energy change is dE idt = •, so

dE = c2dY= q(r + $= qgr'P
dt dt

.4_. (7)
dt mc

We now need expressions for the electric and magnetic fields. We want to

relate the equations to our undulator design, so we choose helical polarization for

the electric field to match the helical magnetic field undulator design selected.

From basic optics, the generic forms for planar electric and magnetic radiation

fields are [4],

EY, (z,t) = E,(cos(kz-wt) , 0 , 01 , (8)

y (Z,t) -Ey [O sin(kz-ot) , 0] , (9)

where

I =  , ki ,

C C

and o = the angular frequency of the wave.

Circular polarization can be achieved by combining the planar forms with a spatial

offset between them called a phase difference, F. The waves move in the positive z

10



direction and combine to form a rotating E vector that describes a helix centered

on the z axis as shown in Figure 6. If we put this in a combined form,

9 = E[ cos(kz -cot) , -sin(kz - cot) , 0] , (10)

it is easy to see that the magnitude of the electric field vector is constant, but the

direction of the vector is a function of z and t.

Y

2
EE

-- r rotating E vector E

Figure 6.

Construction of the total electric field vector ( E )

from the component forms. The rotating EV describes

a circular helix along the z axis from Ref. [4].

If we set vi = (kz - cot), we can simplify the electric field vector to

+ -E[ cos(W),-sin(), 0].(

11



Now that we know the form of the electric field, the magnetic field form can be

deduced. To find X, we use the required conditions for an electromagnetic wave

that the electric and magnetic field vectors are perpendicular and their cross

product points in the direction of the direction of propagation. Thus, we can set up

the following schematic representation and find the orientation and thus the

solution of the magnetic field vector (Figure 7).

__ __ / _
-- TECos( 21 - y ) , s in ( -! - Vy ) , 0

Y- t-, = E[ cos(v) , -sin(v) .0 ]

Figure 7.

Schematic showing the orientation of the magnetic field vector,

r, given the electric field vector, Er.

The equation for the magnetic field in Figure 7 was arrived at by using the form of

the electric field and translating it to fit the conditions we just described. From

geometry, we know that sin(v) = cos(/2 - W) and cos(W) = sin(x!2 - W). Thus,

the simplified form for the magnetic field becomes

-E [ sin(W) , cos(W) , 0 ] (12)
c

12



The helical magnetic field has the form,

=B,[ cos(koz ),sin(koz ),] (13)

where ko = 2nr/ o

By substituting equations (11-13) for the fields into our equations of motion, we can

arrive at the components of the Lorentz Force equation:

d.( ) = -- [Eo(1-sXcoskz ,-sin W, 0) + PcB,,(-sinkoz, cosk.z, 0)] (14)
at meC.

d e- )[E (xcosxg- PysinI)+c 3lm(P.xsinkoz- Pycoskoz (15)

d e [ xcos - i (16)

dt mc

In the equations above, the large scale motion is P ; 13z2 . The next largest scale

motion is the transverse "wiggling" motion, 13j. For relativistic electrons,

--+ 1, so ( 1 - f, ) -4 0, and we eliminate the first term of(14) above.

By integrating (14), the transverse velocity ratio 0. is found to be

[= [cos(koz) , sin(koz) , 0 ] (17)

where K = eBm nX/(2ntmc). We insert (17) in the relation for the energy change,

(16), to get

eKE= COS(), (18)
mcy

where = (k +ko )z-(ot.

If we take a closer look at the electron phase, C, we see that the important

factor is the position of the electron. At the beginning of the undulator, time t = 0,

C(O) = C = (k + ko )zo = 2rzo /X, since k 3- k,. Thus, the electron phase, C, is a

"microscopic" variable in that it scales with the optical wavelength. We can relate

the value of C to energy exchange between the electron and the light wave. We can

see that the physics of the energy exchange is proportional to cos( , ), and

13



-1 < cos( C ) < 1. The initial electron phases, , are random with respect to the

light wave, and thus, form a uniform distribution of phases. Therefore, half of the

electron phases, C, are such that y > 0, and half are such that -y < 0. We need a

better way to express the energy exchange, because it looks like we're not going to

get any energy exchange from (18)! Lets try relating 7 and to complete the

feedback loop. From (2), we have

but using (17), we find that p2 = K2/y2 . Therefore, p2 = 1(1 +K 2)/y2 . By

taking the time derivative and some algebraic manipulation, we can find that for

-y: .1,

= ], _ 72 / since k :*, ko (19)

1 +K 2 (k +ko)c 1 +K 2 kc

To get this in a better form, it can be shown that by using (3), and the relation
p2 = 1(+2)/-? ,

X X2 (1 +K 2 ) , (20)
2-?

which is a more accurate expression describing FEL resonance than (4)! By

inserting (20) into (19), we find that

=eKE __=
- eYcos( )

YrMc 2o),

Substituting into (18), we have

= 2 o. cos( ) (21)y mc

This expression can be made more meaningful by defining a dimensionless time t,

where r = 3o ct IL = ct IL. The dimensionless time has the values 0 < T! 1

along the undulator length L. We define T because the total time spent in the

14



undulator is about L/c = 10- 8 seconds for a typical undulator. Using the

definition of t above, we have

d _2 = C2 dt2 and (00 = d2(

Expression (21) can be simplified to the pendulum equation,

00

C = Ja jcos(C) , (22)

_4ireKNLE

where Ia I = 4mc 2

y2 mc 2

Specifically,
00

C = phase acceleration of the electron,
0

= v = phase velocity of the electron,

= phase of the electron, and

I a I = optical field amplitude.

0

We also know that = (k + ko )z - o) implying that C = L[(k +ko)[3 -k]. Now

we have a relationship between the phase C, and the phase velocity, v.

The phase and phase velocity can be plotted on a phase space plot that shows

the evolution of the electron trajectories in phase space. The path separating open

and closed orbits in phase space is called the "separatrix",

v2 = 21a 1[1+sin( +¢)] , (23)

where 0 is the optical phase. The separatrix passes through the fixed points

(-r/2 , 0) and (3rL2 , 0). The peak-to-peak height of the separatrix is 4 1a 1/2,

while the horizontal position is determined by the optical phase (Figures 8 and 9).

The electrons are injected into the undulator and therefore start their phase space

orbits with initial phase, C, and initial phase velocity, vo. How well the electron

distribution is arranged on the phase space picture is a direct indication of the

beam quality. The poorer the beam quality, the broader the distribution will be.

15
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Fig-ure 8 is a plot of phase space that shows graphically the relationship we have

just developed. Figure 9 is a plot of the relative positions of the light, and the

electron path as the phase space plot cycle begins. The numbers show possible

relative positions between the light and the electron as thcy enter the undulator.

The correspondence between the numbers in Figure 8 and Figure 9 are:

Point 1 (relative ph:ase position shown) is an unstable critical point.

Point 2 (if it were at the origin in Fig. 9) corresponds to a stable

critical point.

Point 3 (if it were at the origin in Fig. 9) describes the same condition

as point 1.

The gain of the FEL comes from a bunching of the electrons as they interact

with the light that is best depicted in phase space. As seen in Figure 10, the

electrons in the left hand side of the separatrix have gained in phase velocity

(absorbed energy from the light) and the electrons in the right hand side have lost

in phase velocity (lost energ, tc the light).

17



FEL Phase Space Evolution *

a0=2 Vo=0

5 Gain 0.001

W 0.1

Figure 10.

Phase space plot for electrons injected in the resonance condition.

If the electrons are allowed to continue the interaction for a longer time, the motion

will continue. Some electrons lose energy and some gain, so that there is no net

energy transfer and the gain is zero. If the electrons are given a non-zero initial

phase velocity, there is a difference in the net energy exchange and non-zero gain is

achieved (Figure 11). It can be shown that the maximum gain is achieved at

vo 2.6.
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**FEL Phase Space Evolution**

ao0=2 vo0=2.6

5[ Gain 0.14

L 0
0.1

0

- 5 M 11 1111111111111111 IfI

-n/2 3n/2 0 1

Figure 11.

Phase space plot for electrons injected with a positive initial phase velocity.

The proceeding discussion shows that the electron positions and velocities are

critical to the performance of the FEL. If the initial electron velocities are random

over a significant range, bunching of the electrons degrades and the gain is small.

If non-uniform magnetic fields cause deflections from the undulator axis, the

electron phase velocities are changed, bunching can be destroyed and the gain is

small. Thus, the FEL undulator, which controls the magnetic field magnitude,

length of interaction and uniformity of fields, is critical to the ultimate performance

of the device. It is easy to see that optimization of undulator design is crucial to

all applications of the Free Electron Laser.
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B. UNDULATOR DESIGN

Many Free Electron Lasers have been built incorporating various attributes.

As in most endeavours, there is no one design that has all desirable traits

incorporated. Thus, the researcher must decide which specific parameters are

most important and design the optimum device to achieve it. There are two

general classes of undulators available today. They are the linearly polarized and

the circularly polarized classes. The linearly polarized class primarily uses

permanent magnet structures while the circularly polarized undulator primarily

uses current carrying coils to establish the magnetic fields.

1. Linearly polarized undulator

The permanent magnet structures produce a linearly polarized magnetic

field of the form [5],

9 L = B. [ 0, sin(koz)cosh(koy) , cos(koz)sinh(koy) ] (24)

The perfect electron trajectories are sinusoidal in the y-z plane with no motion in

the x direction. Away from the undulator axis, the average transverse field

strength increases in the x direction only,

g+ =2 I+ T + .. ] (25)

This undulator provides focusing in the x direction, but not in the y direction. In

practice, the experimenter uses other forms of magnetic focusing, such as a

quadrupole lens or machining a slight parabolic curve in the normally flat magnet

pole faces. The curved surface produces a smaller gap between the magnetic poles

off axis, thus increasing the field strength off axis. The parabolic shape results in

equal focusing in each radial dimension to maintain a circular electron beam cross

section. The field from parabolic pole design with equal x-y focusing is
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B L = Bm sinh [ - sinh [vI cos(koz) , BfL =Bm cosh cosh [--] cos(koz)

B L  2Bmcosh sinh Y sin(koz) (26)

The perfect electron trajectories on the axis are again sinusoidal in the y-z plane,

but away from the axis the transverse field increases in both the x and y direction

equally,

UL = 42 1+ 4 +-- (27)

Notice that the magnitude of the average field seen by the electrons on axis is

B-L = Bm/-i4. The average transverse acceleration of the electrons is smaller due

to the magnetic field reduction, and thus, the linear undulator gain is reduced. As

we will see, this is not a problem with the helical undulator, but the construction

techniques involved make the linear undulator much less complicated to build.

2. Circularly Polarized Undulator

The helical undulator with circular polarization has a field involving first-

order Bessel functions, but near-axis fields can be approximated with error <1%

for ko r < 0.8 by [5,6]

B = -Bm 1 + 1ko 2(3x 2 +Y2)1 in(k, z k 2xy cos(koz

By1 = Em 1 + 1 k-2 + 3y2 - ko2Xy sin(k z and

BH = -Bmko 1 + -1ko 2x2 + Y2 [xcos(koz) + ysin(koz)] (28)

Electrons injected into these fields will travel in helical paths centered along the z

axis. Comparing the average transverse magnetic fields, we find that
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B.. kr 2 + 1 (29)

and it is easy to see that off-axis fields are stronger closer to windings. This radial

increase of the fields has a "focusing" effect on the electrons which results in a slow

oscillation around the longitudinal axis. This motion is known as Betatron

oscillations. The magnitude of the average field seen by the electrons on axis is

- = Bm which results in higher transverse acceleration of the electrons. This in

turn causes greater electron bunching, and thus, higher gain.

Greater coupling and simplicity led us to choose the helical bifilar design.

With this design in mind, another attribute we desire is a shorter wavelength light

output. One of the ways to accomplish this is the electromagnetic compact FEL.

C. THE COMPACT FEL

The compact FEL design is one method of accomplishing shorter wavelength

light output. Since we know that

X 1 + K 2 ) , (30)

2-?

by shortening the length of our undulator period, we can shorten the light

wavelength. Shorter wavelength light has many desirable properties such as

atmospheric window propagation, and laboratory material interaction to name just

a few. Shorter wavelength light also has higher energy so energy deposition on

targets is greater. Thus, the compact bifilar helix is the design chosen to illustrate

our modeling technique.

1. Specifications

Originally proposed by Roger Warren (LANL) [71, and considered as a

tentative experiment for LANL and the Naval Postgraduate School, the following

parameters were used:
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Number of periods N = 10,

Undulator period X,, = 0.9cm,

Gap 2g = 4mm ,and

Lorentz factor y = 30.35.

Although this is the basis of comparison throughout this paper, all lengths were

non-dimensionalized by dividing by X0 for ease of transposition to other undulator

designs.

2. Winding schemes

Using the dimensions for the proposed compact FEL, it is easy to see that

the windings of the bifilar helix cannot be -if a complicated nature. The small

dimensions make the winding terminations at both ends of the undulator, and the

method of power lead connection extremely important to the resultant magnetic

field structure at the entrance to the undulator. We will see that the lead wires at

the end of the undulator carry sufficient current to cause unwanted perturbations

in the incoming electron beam.

Three terminations are investigated in this paper: the wire, loop and

staggered termination schemes [8]. In the case of wire termination, the bifilar

helical wires are continued radially outward when they reach the end of the

undulator as shown in Figure 12a. In the case of loop termination, a circle of wire

is attached to the end of the cylinder formed by the helix with the windings

attached at opposite positions on the circle. Thus, the current from one helical

winding enters at one position on the circle, flows equally around each side of the

circle, and then combines to flow in the opposite direction in the opposing helical

winding as shown in Figure 12b. Staggered terminations are achieved by using

wire or loop terminations as a current taper for the undulator removing a specified

percentage of the current per termination depending on its position in front of an

23



extended undulator. This is visualized by extending the bifilar helix windings past

the entrance to the undulator, and connecting them periodically by a termination

which passes a percentage of the current in the helical windings. Thus, the current

flowing in the helical windings is reduced stepwise by the number of terminations

added prior to the entrance of the undulator. This resuits in a tapering of the

magnetic field. Tapering of the magnetic field at the entrance of the undulator can

also be achieved by flaring the windings which is accomplished by using a

progressively larger radius for the extended bifilar windings as distance before the

original undulator entrance increases. The Loop termination scheme with current

tapering (staggering) vice flaring the windings results in the smallest magnetic

field spike at the entrance of the undulator [8]. This paper investigates fields at

the entrance of the undulator in the compact FEL. The effect of undulator exit

termination is explored as well, and the fields found are used to determine the

incoming electron trajectories.
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X XA

(a) (b)

Figure 12.

Illustrations of termination geometry for (a), Wire termination

and (b), Loop te 'mination.
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III. MODELING OF UNDULATOR CHARACTERISTICS

A. REPRESENTATION OF FIELDS

1. Theory

As discussed in the background section, this paper calculates tle

magnetic field at any point by using the Biot-Savart law. The magnetic field at

any position can be expressed by,

Sr 't Xe(31)
41c r 3

where r = [r 2 + rY2 + r2 ] 2

A9 is the magnetic field contribution at the desired position by th current element.

go is the magnetic permeability constant. I is the current flowing in the current

element, At. The distance and direction of the desired position from the current

element is expressed by 7. By integrating over the winding configuration of choice,

the magnetic field at any particular position can be found. To find the current

elements, At, we need to investigate the particular geometry of our winding

configuration.

a. Integration of Magnetic Field

To develop the integration, we describe a very small piece of a

current carrying wire in a particular geometry. As discussed previously, the

methods of termination discussed will be; (i) Wire, (ii) Loop, and (iii) application of
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wire and loop to the exit configuration. First, we need to discuss the geometry of

the helical windings to set up the periodic magnetic field needed for undulator

operation (Figure 13).

x x

Figure 13.

Schematic representation of the bifilar helical path.

(1) Helical Windings. Referring to Figure 13, we can represent

the position and angle of the current element by

xj = gcosOj , yj =gsinOj , zj =
nz

where i = 2j ,j = 0,1, 2, ... , Nn,-1
nz

n, = No. of divisions of an undulator period, and

N is the number of periods in the undulator.

The current elements have the form:

ALX = -27tgsin , ALy = 2 rgcoso , ALZ = 1

nz n, nz
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where g = radius of the undulator.

Now use the definitions

AL = (AL + y2 +A2+AL2)2 , and

r2 = (x xj) , r2 = (y _yj)2 , r2 = (z zj)2

where ( x , y , z) is the position of the electron,

to substitute into (31) to sum up all the contributions from the current elements in

the helical windings. If we did not have to worry about end effects, this method

would give the desired solution to the interior magnetic fields of the undulator.

Unfortunately, this is not an infinite length undulator and we next start

discussing the termination methods. The simplest method of termination and

simulating the leads connected to a power supply is the wire termination method

(Figure 14).

X

352 
(5 4) 5/

52

sl = - s2 = 27

nz nz

Figure 14 .

Schematic representation of the wire termination method.
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(2) Wire Termination. Referring to Figure 14, we can describe

the position and angle of the current element mathematically by,

Xe =a + 2e[2ni] -n , Ye=0 , Ze = 0

where e = 1 , 2 , 7n,

The current elements have the form:

'Lx- , ALy = 0 ALZ 0
nz

The contribution of the wire termination is summed by substituting into (31) as

explained for the helical windings. The top and bottom wires need to be

differentiated in their individual contribution. The current elements in both

produce the same respective orientation but the distance from the current element

to the electron is different according to the following:

Topwire: re = [x -x e )2 + y 2 + Z2 ]/2

Bottomwire: re = [ (x + X ) 2 + y2 + z 2 ]]12

As will be seen, this method of termination is by no means ideal. The other

method of termination explored in this paper is loop termination (Figure 15).
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I /Y

Figure 15.

Schematic representation of the loop termination method.

(3) Loop Termination. Referring to Figure 15, we can describe

the position and angle of the current element mathematically by,

Xe = gcosOe , Ye= gsinOe , Ze 0

where 6e = 2ne and e =0, 1, 2, nz
nz

The current elements have the form:

Oe = 0--+ 180': ALX = 21,gsinO ALy -2 ,cosO ALz = 0
nz nz

-2Vg sin0e  21tg cos~e0, = 180 -4 3600: ALx n. , ALy - c AILz = 0

nz nz

The current elements are summed as before. The last termination investigated is

applying the wire and loop terminations to the exit of the undulator.
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(4) Exit Termination. To apply wire termination to the end of

the u-ndulator, the only difference in the previous argument is to reverse the sign of

the current flowing in the current elements. To apply loop termination to the exit,

and still connect the power leads, requires close examination of the geometry

(Figure 16).

x

_5'

Figure 16.

Schematic representation of loop termination at the exit (up).

As can be seen in Figure 16, the current in the loop exit termination is in the

opposite direction. Also, replace all uses of z in the equations with z - N to get

the correct distance to the electron. The wire termination used to attach the power

lead to the loop is a modification of the previous geometry using z - N and the

distance now becomes,

re = ( Xe) 2 + (z -N) 2 ]112

The wire termination used at the end of the second wire from the bifilar helix is

the same as above except the current is reversed and the z distance becomes

z - 0.999N for physical separation of the leads.
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The final variation studied is the exit termination with the

wire connections going down (Figure 17). X

Figure 17.

Schematic representation of loop termination at the exit (down).

The only variation in the equations from the previous discussion is in the r term.

Replacing the minus sign with a plus sign achieves the necessary modification.

(5) Coil Winding Tolerances. Though not pursuci in this

paper, there is another possible application of the integration method discussed

above. The flexibility of the current element integration technique allows easy

change of the winding configuration. This flexibility would apply just as easily to

displacing the windings slightly from the ideal positions explored. This would

result in the ability to compare simulations to determine coil winding tolerances.

The usefullness of this would help in the construction of actual undulators as

outlined in [9].
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b. Use of the K vector

The magnetic field at any point in the undilator is found from (31).

A more useful quantity in the derivation used for the electron trajectories is the

value K. Since the definition for K is K = eBm %,/(2Trmc ), we see that the value

of K is proportional to B. Thus, the representations of the magnetic field Fbown

will be using K to lead into the electron trajectory discussion.

2. Results

Now that we have developed the theory, we need to have some method of

displaying the fields so we can get a bettor understanding of the stray field

problem. As mentioned earlier, the Biot-Savart law was used to calculate the field

contributions due to individual current elements. The field near the axis can be

found analytically from (28) and agreed with the numerical calculations. Thus, the

accuracy of the model is good, and can be applied to positions outside the

undulator. The integration method also allows us flexibility in the winding

configuration used for the integration. Thus, we can model the stray fields at the

entrance to the undulator with the various termination schemes already discussed.

The integration technique is first used to find the magnitude of the K vector along

the axis for comparison between winding configurations, and as a comparison to

the original work by Fajans [8]. In all simulations, the undulator entrance is fixed

at z = 0. If tapering is used, it is added prior to this point making the undulator

longer.

a. K Components

The first simulation is the K values for wire entrance and exit

terminations. This will be referred to as wire/wire termination. This is the

simplest of the termination techniques explored. The method of display is a dual

plot of the x and y components of the K vector along the z axis. The z scale shows
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the tapering used by a circle whose radius is proportional to the current centered

on the undulator periods (Figure 18).

There is a slight asymmetry to the magnitudes of the two

components as seen in the maximum and minimum values displayed. Notice that

the y component of the K vector has a significant value for a considerable dis, ace

before z = 0. This is expected as the wires oriented for the termination contribute

a field on axis in the y direction only. There is no large field gradient or spike at

the entrance as predicted by Fajans [8]. The distance over which the y component

can affect the entering electron trajectory may result in the same deflection as a

large field spike.

** K magnitude for wire/wire terminations **
N=0 KKxmaxl.-04 Kymax=l.28

=0Kxmin=-.05 Kymin=-1.00

1.5

- I

z
-N/2 N/2

Figure 18.

Combined plot of the K components along the z axis with no taper.
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Also, there is an abrupt transition in the magnitude of the fields,

especially in the x plane, right at the entrance to the undulator. To reduce the

abrupt change, we try tapering the undulator. The first example of tapering uses a

1 period taper shown in Figure 19.

** K magnitude for wire/wire terminations **
Kxmax=l.n04 Kymax=1.21

N=10 Kxmin=-I. 05 Kymin=-1.00

1.5

~ky

z
-N/2 N/2

Figure 19.

Combined plot of the K components along the z axis with 1 period taper.

As is seen, tapering ameliorates the abrupt field changes at the entrance.

Unfortunately, the long lead of the y component is still evident. Also, even though

tapering has been applied, there is a significant asymmetry still evident just inside

the entrance.
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This effect does not go away, even if the tapering is increased as

shown in Figure 20. Like before, the long tail and asymmetric spike just inside the

entrance is seen. The asymmetry of this termination scheme leads us to the

suspicion that this winding design might not prove to be optimum.

** K magnitude for wire/wire terminations **
Kxmax=1.04 Kymax=.17

N=10 Kxmin=-1.05 Kymin=-I.00

1.5

-1.51

z
-N/2 N/2

Figure 20.

Combined plot of the K components along the z axis with 2 period taper.

The next step is to try loop termination to see if better results are

achieved. If we apply a loop entrance and a wire exit (loop/wire) termination, we

arrive at the values displayed in Figure 21. We see immediately that the range

over which the y component is a single contributor is considerably shorter. The y

component also starts with a positive value vice a negative one. This shortening

and reversal is accompanied with a better symmetry seen throughout the displayed

range as the maximum and minimum values show.
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**K magnitude for loop/wire terminations *
N=I0 Kxmax=l. 02 Kymax-l. 03.

N=0Kxmin--I. 03 Kymin=-1. 04

1.5

-N/2 2 N/2

Figure 21.

Combined plot of the K components along the z axis with no taper.

The improved symmetry should get better as we add tapering and it

does. Figure 22 shows the combined components with a 2 period taper. The short

range that the y component acts unopposed outside the entrance, and improved

symmetry should prove to be a better design for the injection of electrons which

will be explored later.
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** K magnitude for loop/wire terminations **
Kxmax=1.02 Kymax=1. 03

N10 Kxmin=-1.03 Kymin=-1.02
1.5

-1.51

z
-N/2 N/2

Figure 22.

Combined plot of the K components along the z axis with 2 period taper.

The improved symmetry seen for the loop termination can be taken

one step further by using it on the exit termination. This loop/loop termination

would simulate an undulator with loop termination at both ends, and the power

leads connected to the power supply via coaxial cable that give no magnetic field.

We expect that this modification should have slightly better symmetry, since the

dimensions of the compact FEL bring the exit termination close enough to have a

noticeable effect on the entrance fields. If loop exit termination is added to the

previous simulation, mixed results are achieved as shown in Figure 23. The range

between minimum and maximum values for the components is reduced and the

minimums and maximums are more constant than the previous case.

Unfortunately, there is no clear cut indication that this termination technique
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produces noticeable changes. Thus, we can only guess that this method would

provide a better entrance field for incoming electrons. Since we have verified

correlation to previous work [8], and established a guess as to which one should

offer the most symmetrical magnetic fields, we need to find a better way of

representing the fields. This section investigated the field amplitudes along the

axis. The electrons will be following a helical trajectory through the undulator, and

therefore, will experience fields off-axis in their travel through the undulator.

Thus, modeling of off-axis fields needs to be explored.

** K magnitude for loop/loop terminations(up) **
N=1 0 Kxmax=1. 00 Kymax=0.99N=0Kxmin=-I. 01 Kymin=-I. 01

1.5

-1.51'

z
-N/2 N/2

Figure 23.

Combined plot of the K components along the z axis with 2 period taper.
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b. Closeup of Entrance K Field

As mentioned previously, the fields off-axis are important to the

calculation of the electron trajectories. A model can be envisioned that would

contain the space vectors representing the magnetic field at any point in the

undulator. This is the definition of a vector field, and while the subsequent

electron beam trajectory calculations would be relatively simple, it is easy to see

that any attempt to give accuracy to the vector field representation results in a

computational nightmare. The sheer number of points needed for a three

dimensional representation would overwhelm most computers. Thus, the model

needs to be reduced in scope. The most obvious choice is to limit the boundaries of

calculation inside the undulator which will reduce the number of points in the

vector field that need to be calculated. Since the dimensions of the electron beam

and the limits of off-axis motion are small, this is a reasonable simplification. The

boundary could be as small as a fourth of the radius of the undulator and the

number of points would then be reasonable for present-day computers to calculate

and display. This method would be the best to pursue if a real beam of electrons is

trying to be simulated. As mentioned in the background section, the density of the

beam is on the order of 1012 electrons/cm 3. It is not practical to calculate the

magnetic field for individual electrons when this many are involved. However, the

model in this paper does not deal with a great number of electrons, only a small

representative fraction. The calculations can be greatly speeded up by only

calculating the magnetic field at the electron positions. This drastically reduces

the number of calculations needed for accurate representation. The magnetic fields

at the electron positions are used to calculate the force. This enables us to find the

accele.-ations, and subsequent integrating finds the new positions.

Now that we have established that calculating a complete vector

field is too hard, it would be even worse trying to represent it in some intelligible

way. Therefore, we will pursue a planar representation of the vector field. The
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integration technique was applied to the end of the undulator to see the stray field

effect. The structure of the fields were illustrated by shade gradations

corresponding to the value of the K vectors. The magnetic field values get very

high close to the windings as one would expect. Therefore, to see the fine structure

of the fields, positions only out to half the radius of the undulator are shown. The

magnitude plot on the left has the windings on the outside of the undulator

overlaid as dark black lines to help provide viewpoint recognition. To emphasize

the need for tapering, simple wire termination is shown with positions from one

period outside the undulator to one period inside the undulator as shown in

Figures 24a and 24b. The white lines are contour lines of constant magnitude.

Notice the skewed nature of the fields from the contour lines. As was conjectured

previously, there are large asymmetrical fields at the entrance, and undesirable

perturbations would distort the incoming electron trajectories.
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**K values vs. position **

No taper 0 =0.009m g--0.2222

0 07 .7 K

0.10 ~kz1.73 -0.75 1.08 :Ky

ZXIKI K

0

-g/2 g/2 -g/2 K g/2-g/2 g/2

I K(0,0,O0) 1 0. 4691

Figure 24a.

Graphical representation of the K field composition in the x plane

from 1 period outside to 1 period inside the undulator.

The design is wire/wire termination.
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**K values vs. position **
No taper X0 =0.009m g-0.2222

-0.88 Z 0.89 :Kx

011.6-0.59 0.93 :Ky

z

z+%
-g/2 y g/2 -g/2 y g/2-g/2 y g/2

IK(00,0)I = 0.4691

Figure 24b .

Graphical representation of the K field composition in the y plane

from 1 period outside to 1 period inside the undulator.

The design is wire/wire termination.
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If we rerun the same scenario with a two period taper, we see by the

contour lines and the maximum and minimum values that some of the

asymmetrical nature has been reduced as shown in Figures 25a and 25b. Even

though tapering has improved the picture, the overall symmetry of the wire

termination scheme still leaves a lot to be desired. The next step is to apply loop

termination to our model and see if our previous conclusion of better symmetry

applies to off-axis fields.

Overall symmetry is seen when we apply loop/wire termination to

our simulation as shown in Figures 26a and 26b. Even with no taper applied, the

contour lines and the maximum and minimum values show a much more organized

nature than befrre. This trend should get better if we apply tapering to our model,

and it does in Figures 27a and 27b. The final simulation will be for loop/loop

termination with no taper for comparison to the loop/wire termination (Figures 28a

and 28b).
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**K values vs. position**

Tapered x 0=0.009m g=-0. 2222

-0.72 0.71 "Kx
0.3 1 69-0.79 0.98 :Ky

Z-X 0 ~IKI K

z-°

Z x

-g/2 x g/2 -g/2 x g/2 -g/2 x g/2

IK(0,0,0)i = 0.7414
Two period taper

Figure 25a.

Graphical representation of the K field composition in the x plane

from I period outside to 1 period inside the undulator.

The design is wire/wire termination.
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**K values vs. position **
Tapered X 0 0.009M g--0.2222

-0.87 ~.0.87 :Kx

041.4-0.63 ~ '0.83 :Ky

IKI K
Z-X

z

Zx0
-g/2 y g/2 -g/2 y g/2-g/2 y g/2

IK(0,0,0)I = 0.7414
Two period taper

Figure 25b.

Graphical representation of the K field composition in the y plane

from 1 period outside to 1 period inside the undulator.

The design is wire/wire termination.
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**K values vs. position
No taper %0=0.009m g--0.2222

-1.08 10 K

0.03 1.53 ~ -1.26 11 K

Z-x IKI K

Z

z+XL

-g/2...... g/.-/.... /2 X /

..................5.5

Fig...re 26 . ......
Graphical~~~~~~~~~. rereenato ofteKfed.opsto. i h ln

Thedsignigooure terinaion
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K values vs. position
No taper 0 =0. 009M g=-0.2222

-1.26 4 1.21 :Kx
0.031.3-.510 

y

Z-x 0 ~IKI K

z1

-g/2 y g/2 -g/2 y g/2-g/2 y g/2

I K(0, 0,0)I 0. 5505

Figure 26b.

Graphical representation of the K field composition in the y plane

from 1 period outside to 1 period inside the undulator.

The design is loop/wire termination.
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X* values vs. position *

Tapered X =0.009m g--0.2222

-1.07- 1.05 :Kx
0.501.2-.512 K

Z-X 0 ~IKI K

-g/2 X g/2 -g/2 g/2-g/2 Xg/2

IK(0,0,0)t 0.8508
Two peri.od taper

Figure 27a .

Graphical representation of the K field composition in the x plane

from 1 period outside to 1 period inside the undulator.

The design is loop/wire termination.

49



**K values vs. position ***

Tapered 710=0.009M g--0.2222

0. 5 0 ME : .5 11 .5

IKIK

z

..................

-g/2 y g/2 -g/2 y g/2 q/2 y g/2

I K(0, 0,0)I = 0. 8508
Two period taper

Figure 27bh.

Graphical representation of the K field composition in the y plane

from 1 period outside to 1 period inside the undulator.

The design is loop/wire termination.

50



*** K values vs. position ***

No taper x =O.009m g--0.2222

-1.05zZ1.01 :Kx
0.03 1.51 -1.24 1.1 K

IKI K

Z-g/ 0/ g2g2-/ /

zK000I=055

Figur 28...
Graphial repesenttion o the....eldco.postion.n.the..plan

romca 1epreeaiod outid toe 1 ped insideten unultor.pan

The design is loop/loop termination.
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**K values vs. position **

No taper X =O.009m g=0.2222

0 12 .1 K

0.03 1.49 -1.2Z 097 :Ky

Z-x 0 ~IKI K

z

~~. ........

-g/2 y g/2 -g/2 y g/2-g/2 y g/2

IK(0,0,0)I = 0.5458

Figure 28b.

Graphical representation of the K field composition in the y plane

from 1 period outside to 1 period inside the undulator.

The design is loop/loop termination.
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Unfortunately, the exit termination representation does not give a

clear improvement of the stray field structure. The resolution of optimum design

will have to wait for a different representation of the fields. To pursue this avenue,

there is a possibility that the view shown is too narrow. Thus, we shall expand the

displayed K field to show an enlarged view.

c. K Field Over Five Periods Inside and Out

We next apply the terminations to a display that shows positions

along the z axis from 5 periods outside the undulator to the middle of our

undulator. Again, shade gradations show the detailed structure of the stray fields

at work on the entrance to the undulator as shown in Figure 29. The structure

seen is quite complicated and several trends are evident. The first is the contour

lines along the axis of the undulator. The contour lines show that the fields are

not uniform along the axis where they should be the most symmetrical. Also, the

light area right at the entrance to the undulator indicates the strongest magnetic

field is present right at the entrance. This abrupt field change may prove

detrimental to the electron trajectories investigated shortly. If the contour lines

close to the coil positions are studied, the x plane reveals an interesting feature.

The contour lines have a magnitude sinusoidal with the z direction. The

magnitude of the contours gets increasingly symmetrical as the undulator is

traversed indicating the termination wires affect the magnetic field structure all

the way to the center of the undulator. This effect is not evident in the y plane.

We could conclude that electron trajectories would be significantly affected by this

type of design, especially in the x plane. Since the stray field structure looked

more symmetrical for loop termination, we should see if this applies to our

expanded view of the undulator fields.
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** Undulator Magnetic Fields **

N--10 g/ko0 =0.2222 K(0,O,N/2)=1.00

g/2

x

-g/2

g/2

y

-g/2

-1/2 z N/2

Figure 29

Graphical representation of the K field composition in the x and y plane

for wire/wire termination. The displayed positions are from 5 periods

outside the undulator to 5 periods inside the undulator.

If loop/wire termination is applied to our model undulator, we can

see major changes in the representation of the fields as shown in Figure 30. The

overall symmetry of the structure is better, especially in the x plane. The
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sinusoidal variance of the fields close to the windings now appears to be reversed,

but at a significantly lower amplitude. The abrupt change in field intensity at the

entrance is also reduced in intensity. The close spacing of the contour lines at the

entrance signify a significant field gradient right at the entrance that seems to

extend for a much shorter distance than wire/wire termination. An interesting

feature is the significant asymmetry at about 1 undulator period inside the

undulator. This is evident in both the x and y plane. The conclusion taken from

this representation is that this design provides better magnetic field symmetry and

should have a less detrimental effect on the incoming electron trajectories. The

final design considered is for loop/loop termination as shown in Figure 31.
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**X values entering undulator *

N=10 g/%,,=0.2222 IK(0, 0, N/2) =1. 0 0

g/2

x

-g/2

g/2

Y

-g/2
-N/2 z N/2

Figure 30.

Graphical representation of the K field composition in the x and y plane

for loop/wire termination. The displayed positions are from 5 periods

outside the undulator tW 5 periods inside the undulator.

Looking at the plot, we still see the ambiguity we had before with

this design. Since the construction of the undulator is close to loop/wire

configuration, it is not surprising that we see the basic symmetry throughout the
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displayed fields. The major difference seen is a sharp reduction in the sinusoidal

variations of the contour lines close to the windings. The increased symmetry seen

should prove to be the best design of the termination schemes explored.

57



*K values entering undulator *

N-10 g/A 0 .2222 K(O,O,N/2)=1.O

g/2

x

-g/2

g/2

-g/2
z

-N/2 N/2

Figure 31

Graphical representation of the K field composition in the x and y plane

for loop/loop termination. The displayed positions are from 5 periods

outside the undulator to 5 periods inside the undulator.
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B. REPRESENTATION OF TRAJECTORIES

1. Theory

As mentioned previously, the magnetic field is found a- the electron

position only when calculating the electron motion. Using the magnetic field, the

force is found ,using the Lorentz Force equation (5). We neglect the presence of

light ( 9,. = 9,, = 0 ), and use the calculated magnetic field to integrate the motion.

We know that

x and if 0 (6)
dt m

- ( PyB, - PBy , .B. - , 0 ]

= p By _ py ] (32)
rm

Recall from (17) that

, 1 , (33)

Y

so that I3 = 0. Then, using = 1, we have the approximate z motion,

z = z, + T-L where T = ctIL. Using P3 ,, wY c , o find that

S= e.._ By ,S 1 (34)
TMn

which leads us to

" - e By - eB (35)
c = r c Yn

Using dt = Ld Tic, we find that

00 L 2eB L 2eBX
x = and y = , (36)

where ( ) = d( )1dT. Finally, ,,ith x/, - x , y/X, - y ,and z /k --oz, we
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simplify these expressions to

00 2XAN 2K 00 2xN2K,
x - , y , z = z, +Nt , (37)

where

Kx, y - xmc

The Euler-Cromer integration method will be used to update the electron position

as it travels through the fields represented in our simulated undulator [101.

2. Example of Ideal Injection

The previous discussion explores the technique used to determine the

electron trajectories. This rection describes ideal injection where the electron is

moving tangent to the motion it would describe if it were inside of an infinite

undulator. In our case, this motion is a helix centered on the z axis. Good

injecticn is desirable in experiments because it establishes a smooth transition into

the undulator and increases the gain of the FEL.

The exact trajectories in a helical undulator are

= [-Kcos((Ot) , -K sin(ot) , 1o] (38)
Y Y

where

P 2 nep 1 + K 2

0= 1ok.c = and 0 = 1

By integrating, we can get the exact equation for the electron position at any time

t,

r KX0  Kko

=? 2r _ sin(o°t) cOs(wO° t) ' PoC (39)
L 2iry30  2ttyo. i

At time t = 0, the trajectory describes the maximum angle with the z axis in the x-
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z plane. Therefore, to describe the angle that is tangent to the helix, we define the

angle 0, where it can be shown that,

-dX K
Ox = x- = px(0) - , ey = 0 if P,(0) = 30 = 1

and

Ax =0 , Ay = KX (40)

By substituting the parameters of our model undulator with K = 1, y = 30.35

and X0 = 0.9cm. into (40), we find that the perfect injection angle is ox 0.033

radians, and Ay = 0.0053 (non-dimensional units).

3. Results

Now that we have developed the theory of electron trajectory calculation,

we need to develop some way of displaying the resulting information. To add some

continuity, the electron trajectories will be calculated and overlaid on the same K

field shown previously in Figures 41, 43, and 45. Although simple in principle,

there are a couple of complicating features that need to be addressed. The first is

the electrons' initial position and angle inside the beam. The second is finding

some way of estimating the injection parameters so that optimization of undulator

designs can be discerned. The easiest way to accomplish this is to determine a

"characteristic" angle and position offset that the stray magnetic fields will bend

the individual electrons through.

The individual electrons inside the simulated electron beam are given an

initial position and angle consistent with a characteristic beam quality factor called

"emittance". The definition for emittance is t, = 2 nX ;. and y = 2 iT y y, and

it is assumed in this paper that E, = Ey. The quantity Y is the rms initial

position spread of electrons along the x direction and 6. is the rms initial angular

spread of electi -ns from the axis of the undulator along the x direction. Either the
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rms position spread, 9, or the rms angular spread, ;,, can be changed by

external focusing fields prior to entrance into the undulator, but their product, r',

is fixed. Thus, arbitrary values for Y and ik are chosen such that Y = 2 re,

where re is the electron beam radius, and U., = 4 reIN. The value used in this

paper is re = 0.1g where g = 2mm.

The electrons are initially started at 5 undulator periods away from the

beginning of the first taper. The electrons are injected at a position and angle such

that the resulting trajectories execute helical motion centered around the z axis.

Since there are a large number of designs, we need to find some method of

determining the optimum tapering scheme for each termination. The initial angles

and positions are estimated by a calculated characteristic deflection angle and

position offset for each design. By finding the minimum characteristic deflection

angles and position offsets, the optimum taper for each end termination is

determined. Using (37), we have

00 2rNK _gy dv, 00 2rN2K,, dvy
x =- - and y = -7 dr 7 dr

With dT = dz/N, it can be shown that on the undulator axis,

dv, = 2XrN 
5

Sts+t)K (0,0, z) dz

where t is the number of tapered periods. The initial transverse velocity gives the

initial transverse angle, so that

dx dxN
dv,, = dx = OXN (41)

Therefore, the characteristic angle of an electron traveling into the undulator is

2- 5 K (0,0,z)d and 2= f -. +(KX (0,0, z) dz (42)

To find the characteristic position offset, we continue the previous derivation and

apply (41) to (42), and integrate dx over the length of the trajectory. The resulting
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offset is given by

= '6X 'f K(0,0, z) dz and

AY =_ J4 jdJ. 5  K(0~,0,z) dz (43)
,y 5+i t

By translating (42) and (43) into a computer program, the different

terminations and tapers can be evaluated in tabular form shown in Tables 1 to 3.

The type of tapering explored was either linear or a smooth curve fit to the

successive current reductions. If more than a three period taper is used, there is a

possibility of designing the taper such that the stepwise current reductions do not

follow a straight ramping function. The current reductions can be tailored to follow

a curved function. The curve fit was tried with both a tangent function and a

smooth curve (determined by hand) representing the current reductions.

It is important to note several points about the characteristic angles and

positions determined. The first is that the K values are confined along the z axis.

Since the actual electron trajectories do not exactly follow the z axis, the deflection

angles and position offsets found will not exactly match the offsets required for

injection. However, the trends found in the tables are a good indicator of optimum

tapering schemes for each termination design. The second point is the integration

length of the y component. Referring back to Figures 18 to 23, notice the difference

between the component K values along the z axis. The K component ends on an

even period at z = 5. This is not true for the Ky component. The integration

distance for the y component is taken to be one-quarter period less to account for

the alternating values seen by the incoming electron. Therefore, the modified

characteristic angle becomes

L2 , K0,0,z)z and K~ =0~,, z)dz (44)
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The new characteristic position offset becomes

A = 
K 

(45)
dz +) 00 z and

2 4.75 - 5+t) (0,0, z ) dz (45)

where K = 1.0 and 'y = 30.35. The units used for the tables will be radians for

angles and non-dimensional lengths for offsets.

The most notable feature in Table 1 is that more tapering does not

achieve the best entrance conditions [8,9]. We can see that no tapering achieves

the minimum characteristic values. Also, the characteristic angles are fairly

insensitive to tapering. This is especially true for the y values. Recall that

tapering did little to assuage the asymmetry at the undulator entrance. Although

not easy to discern, it appears that if tapering is applied, the best method is a

linear taper. This is another surprise as a smooth current taper should produce

the smoothest magnetic field transition. Therefore, the optimum winding

configuration for wire/wire termination is with no tapering. At the bottom of Table

1 are the absolute values of the ideal injection angle and position offset at z = -5

for the perfect trajectories shown in (38) and (39). The absolute values are used

because the simulation and ideal polarizations are not matched.
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Characteristic values for various tapering schemes with wire/wire termination.

Table 1.

Tapering scheme 0. O2 Ax Ay

No Taper 0.062 -0.003 -0.109 -0.188

1 period taper
(linear) 0.063 -0.003 -0.122 -0.207

2 period taper

(linear) 0.063 -0.003 -0.135 -0.225

3 period taper
(linear) 0.063 -0.003 -0.146 -0.244

3 period taper
(tangent function) 0.063 -0.003 -0.153 -0.243

3 period taper
(smooth curve) 0.063 -0.003 -0.150 -0.243

4 period taper
(linear) 0.064 -0.003 -0.156 -0.262

4 period taper
(tangent function) 0.064 -0.003 -0.171 -0.261

4 period taper
(smooth curve) 0.064 -0.003 -0.166 -0.261

5 period taper
(linear) 0.064 -0.003 -0.165 -0.280

5 period taper
(tangent function) 0.064 -0.003 -0.1o 1 -0.279

5 period taper
(smooth curve) 0.064 -0.003 -0.178 -0.280

I Ideal values I 0.033 0 0 0.170

65



Next try the characteristic test on loop/wire termination to find if our

original assumptions are true as shown in Table 2.
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Characteristic values for various tapering schemes with loop/wire termination.

Table 2

Tapering scheme e. Oy Ax Ay

No Taper 0.056 -0.003 0.108 -0.184

1 period taper
(linear) 0.057 -0.003 0.117 -0.203

2 period taper
(linear) 0.059 -0.003 0.124 -0.221

3 period taper
(linear) 0.059 -0.003 0.132 -0.239

3 period taper
(tangent function) 0.059 -0.003 0.132 -0.239

3 period taper
(smooth curve) 0.059 -0.003 0.132 -0.239

4 period taper
(linear) 0.060 -0.003 0.139 -0.258

4 period taper
(tangent function) 0.060 -0.003 0.140 -0.257

4 period taper
(smooth curve) 0.060 -0.003 0.140 -0.257

5 period taper
(linear) 0.061 -0.003 0.146 -0.276

5 period taper
(tangent function) 0.061 -0.003 0.147 -0.276

5 period taper
(smooth curve) 0.061 -0.003 0.147 -0.276
1 Ideal values 1  0.033 0 0 0.170
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The most notable feature in Table 2 is that despite the enhanced symmetry in the

fields noted with loop termination, no tapering is still indicated as optimum.

Because of the increased symmetry, all values can be seen to be less than their

wire/wire counterparts. The characteristic position offset in the x direction has

reversed sign. As in wire/wire termination, if tapering is applied, the linear taper

is slightly better. It is surprising to note that despite the increased symmetry, the

values obtained are not significantly different from the wire/wire values. This

implies that the electron trajectories will show an improvement in imposed input

conditions, but not to any drastic extent. We will see if this is true when the

simulation is carried out. Again, at the bottom of Table 2, the ideal injection angle

and position offset are provided for reference.

The last characteristics determined are for loop/loop termination as

shown in Table 3. Table 3 shows a repeat of all the trends seen for loop/wire

termination. As anticipated, the increased symmetry has resulted in smaller

characteristic values for all methods explored. The inference here is that loop/loop

termination will provide the smallest position and angle offsets required for

optimum electron injection. The characteristic values found are close to the ideal

values shown at the bottom of the Table. All terminations indicate that the

optimum tapering scheme is no taper at all. We now need to apply this knowledge

to an electron trajectory simulation.
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Characteristic values for various tapering schemes with loop/loop termination.

Table 3.

Tapering scheme 01 0y Ax Ay

No Taper 0.037 -0.003 0.042 -0.180

1 period taper
9,inear) 0.037 -0.003 0.041 -0.198

2 period taper
(linear) 0.037 -0.003 0.040 -0.216

3 period taper

(linear) 0.037 -0.003 0.038 -0.234

3 period taper
(tangent function) 0.037 -0.003 0.038 -0.234

3 period taper
(smooth curve) 0.037 -0.003 0.038 -0.234
4 period taper

(linear) 0.037 -0.003 0.036 -0.252

4 period taper
(tangent function) 0.037 -0.003 0.037 -0.252

4 period taper
(smooth curve) 0.037 -0.003 0.037 -0.252
5 period taper

(linear) 0.037 -0.003 0.034 -0.270
5 period taper

(tangent function) 0.037 -0.003 0.035 -0.269

5 period taper
(smooth curve) 0.037 -0.003 0.035 -0.270

1 Ideal values 1  0.033 0 0 0.170
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Now that the optimum tapering scheme for each termination has been

determined, we simulate the electron beam trajectories. The electrons are started

at the characteristic deflection angle and position offset indicated for the optimum

tapering configuration. Several simulations are run to minimize the input

conditions necessary to achieve helical motion centered down the z axis. The first

example is wire/wire termination shown in Figure 45.

Figure 45 shows the superposition of the electron beam trajectories on the

same design as in Figure 42 which has wire termination used at the entrance and

exit of the undulator. The beam must enter in the correct position and angle in

order to get the beam to stay in the undulator. After some optimization, the input

position and angle parameters, starting back at z, = -5 away from the undulator

entrance, are found to be xo = 0.45g , yo=-O.8g , O =0 and Oy = 0.035

where g = 2mm. When additional tapering is used, the input parameters become

even more extreme. If no offsets are used, the asymmetry in the entrance fields

sends the beam into the 3ide of the up iulator at N = 4 periods. The stray fields

resulting from wire termination at both ends are not suitable for practical FEL

application. Loop termination provides a more symmetrical field composition, and

should give a smaller deflection to the incoming electron beam.
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*Electron trajectories using K *

N=10 r-~30.35 g'/4,=0.2222 #part.=25

g/0

x

-g/2
g/2

Y

-N/2 zN/2

Figure 45.

Electron trajectories overlaid on K field background

for wire/wire termination, no taper.
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If loop termination is used at the entrance of the undulator and wire

termination is used at the exit, the result is Figure 46. The input angle

parameters for this design, starting at z0 = -5, become 0., = -0.027 and

0y = 0.035. The loop termination reduces the large magnitude field reversal in the

x plane experienced by the electrons traversing the undulator entrance and thus,

the resultant trajectories are much more like those shown in the y plane (electron

beam deflected by a single angle at the entrance to undulator). Thus, only the

angle offsets are given. The electron beam entrance requirements are reduced,

especially in the x plane as predicted by Fajans [8]. Unfortunately, the y plane

still suffers from about the same extreme position and angle offsets. It is possible

that, because of the compact FEL dimensions, the exit leads are imposing an

unexpectedly significant effect on the entrance stray fields. If loop termination

could be applied to the exit leads, and the wires taken from the undulator in a

coaxial cable, the effect of the wire exit termination would be reduced, and may

ameliorate the entrance parameters.
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** Electron trajectories using K **

N=10 r=30.35 g/Lo=0.2222 #part.=25

-g/2x

-g/2

g/2 a

y

-g/2
z

-N/2 N/2

Fi: ure 46.

Electron trajectories overlaid on K field background

for loop/wire termination, no taper.

Loop termination is applied to the undulator entrance and exit leads

shown in gure 47. Tt is found that the minimum angle and position offsets are

achieved when no tapering is used. The input parar-aeter angles, starting from

zo = -5, become O. = -0.012 and ey = 0.135. The result is that the input

73



electron beam parameters are nearly at the ideal injection angle of 0,, = 0.033

calculated previously. This is obviously the best winding design.

*Electron trajectories using K *

N=10 y--30.35 g/k =0.2222 #part.=25

g 2

x IN

-g/2 ....

g/2 2 .N/...2

Figure 47
Elecrontraectriesovelai onK l bakRun

for ooploopterinatonno tper

7 4 ... .......... ....



IV. CONCLUSION OF OPTIMUM DESIGN

The aim of this paper was to do a computer simulation of the fields and

electron trajectories associated with an FEL. The compact FEL design used was

originally proposed as a method of achieving shorter wavelength light output from

an FEL. The simplicity of design lent itself to easy modeling and because of the

small dimensicnz, was assumed to accentuate the stray fields at the end of the

undulator. These stray fields have not been extensively investigated as they are a

small effect in more common FELs. This turned out to not be the case with the

compact FEL. This determination was reached with many different types of

representations of the magnetic fields associated with the device. The minimum

angle and position offset imposed on the electron beam for smooth entry down the

center of the undulator was used as the determining factor in the selection of the

optimum design modification.

All the design modifications considered show that stray fields at the ends of

bifilar helical undulators with realistic wire leads cause serious deflections of the

entering electron beam. Even with a termination that achieves improved

symmetry in the magnetic field structure, loop termination, the discontinuity in the

fields imposed by the termination itself with any kind of current tapering results in

significant perturbations to the electron trajectories. The optimum design of those

presented is the loop termination design at the undulator entrance and exit with

no taper. This design achieves the smallest position and angle offset requirements

on the input electron beam, and would be the least complicated to construct.
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